

Evaluation of the measurement uncertainty based on in-house validation data

Ricardo Bettencourt da Silva^{1,2}, Alex Williams¹

(1) Eurachem/CITAC Measurement Uncertainty and Traceability Working Group

(2) Centro de Química Estrutural, Institute of Molecular Sciences, Faculdade de Ciências, Universidade de Lisboa

Workshop:
Quality Assurance Challenges of Measurements from Field to Laboratory with a Focus on ISO/IEC 17025:2017 Requirements

(D)

1

Outline

Different approaches for MU evaluation

Uncertainty components

Available guidance

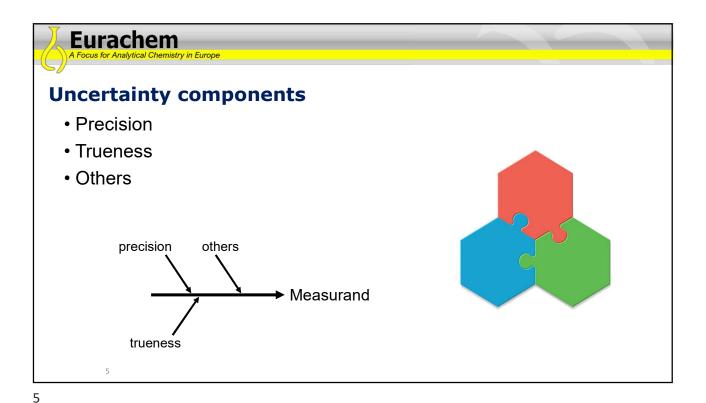
Need for additional guidance

Snapshots of the guide

Final remarks

Different approaches for MU evaluation

- Bottom-up approach
- Top-down approach
 Based on in-house validation data
 Top-down approach
 Based on interlaboratory data


3

3

Different approaches for MU evaluation

- Bottom-up approach
- <u>Top-down approach</u>
 Based on in-house validation data
 Based on interlaboratory data

Available guides Using in-house validation data for MU evaluation

- VAM project, 2000 [1]
- Eurachem/CITAC, QUAM, 2012 (Example A4) [2]
- Eurolab TR 1/2007, 2007 [3]
- Nordtest TR 537, 2017 [4]

^{1.} V. J. Barwick, S. L. R. Ellison. VAM Project 3.2.1: Development and Harmonisation of Measurement Uncertainty Principles, LGC, 2000.

^{2.} S. L. R. Ellison, A. Williams (Eds). Eurachem/CITAC guide: Quantifying Uncertainty in Analytical Measurement, Third edition, 2012.

^{3.} Eurolab, Measurement uncertainty revisited: Alternative approaches to uncertainty evaluation, Technical Report No. 1/2007, 2007.

^{4.} B. Magnusson, T. Näykki, H. Hovind, M. Krysell, E. Sahlin, Handbook for calculation of measurement uncertainty in environmental laboratories (NT TR 537 – Edition 4), 2017.

Need for additional guidance

- How to handle the variation of the MU with the concentration
- How to quantify precision improvement from replicate analysis under different conditions
- How to handle systematic effects estimated from the analysis of various reference materials:
 - Correct/ Not correct
 - Systematic effects variation with sample matrix

-

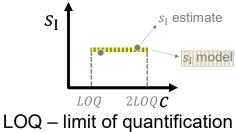
Need for additional guidance

- How to handle the variation of the MU with the concentration
- How to quantify precision improvement from replicate analysis under different conditions
- How to handle systematic effects estimated from the analysis of various reference materials:
 - Correct/ Not correct
 - Systematic effects variation with sample matrix

Guide presented as a tutorial where options are explained!

How to handle the variation of the MU with the concentration, c

9

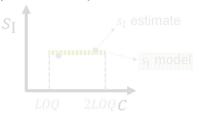

9

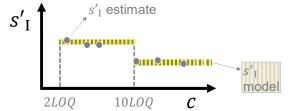
Eurachem A Focus for Analytical Chemistry in Europe

Snapshots of the guide (1)

How to handle the variation of the MU with the concentration, \boldsymbol{c}

Below about 2LOQ, the absolute intermediate precision, $\emph{s}_{\rm I}$, is approximately constant.





How to handle the variation of the MU with the concentration, c

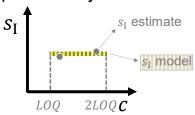
Below about 2LOQ, the absolute intermediate precision, $s_{\rm I}$, is approximately constant.

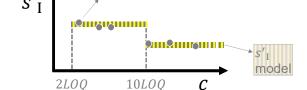
Above about 2LOQ, the relative intermediate precision, $s'_{\rm I}(s'_{\rm I}=s_{\rm I}/c)$, is approximately constant.

LOQ - limit of quantification

1

11


Eurachem A Focus for Analytical Chemistry in Europe


Snapshots of the guide (1)

How to handle the variation of the MU with the concentration, \boldsymbol{c}

Below about 2LOQ, the absolute intermediate precision, $\emph{s}_{\rm I}$, is approximately constant.

Above about 2LOQ, the relative intermediate precision, $s'_{\rm I}(s'_{\rm I}=s_{\rm I}/c)$, is approximately constant.

LOQ - limit of quantification

1:

How precision improves from replicate analysis

13

13

Snapshots of the guide (2)

How precision improves from replicate analysis

Sample result can be estimated as **mean of replicate results** obtained under:

- repeatability conditions
- ${\scriptstyle \circ}$ intermediate precision conditions

How precision improves from replicate analysis

Sample result can be estimated as **mean of replicate results** obtained under:

- repeatability conditions
- intermediate precision conditions

Validation data: • Intermediate precision standard deviation: $s_{\rm I}$

• Repeatability standard deviation: $s_{\rm r}$

15

15

Snapshots of the guide (2)

How precision improves from replicate analysis

If replicates are in agreement with quantified imprecision...

Example: duplicates under repeatability conditions, x_1 and x_2 :

$$|x_1 - x_2| \le 2.8s_r$$

(...)

How precision improves from replicate analysis

If replicates are in agreement with quantified imprecision...

Example: duplicates under repeatability conditions, x_1 and x_2 :

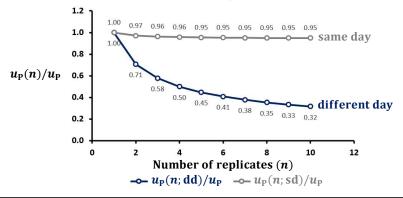
$$|x_1 - x_2| \le 2.8s_r$$

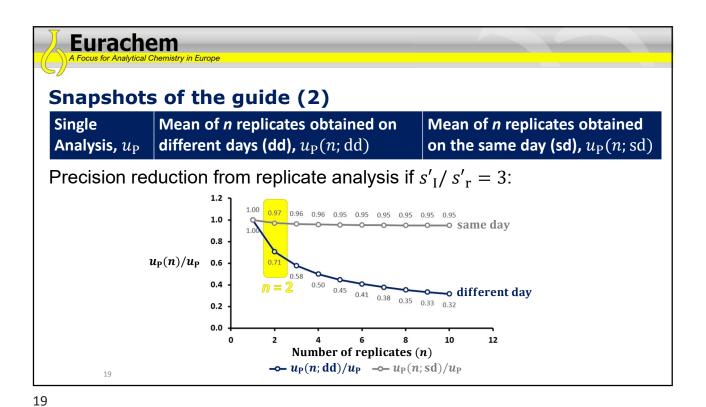
Precision standard uncertainty, $u_{ m P}$

Single Analysis	•	Mean of <i>n</i> replicates obtained on the same day (sd)
$u_{\rm P} = s_{\rm I}$	$u_{\rm P}(n; \mathrm{dd}) = \frac{s_{\rm I}}{\sqrt{n}}$	$u_{\rm P}(n; {\rm sd}) = \sqrt{s_{\rm I}^2 + \frac{s_{\rm r}^2(1-n)}{n}}$

17

17


Eurachem A Focus for Analytical Chemistry in Europe


Snapshots of the guide (2)

Single Mean of n replicates obtained on Analysis, u_P different days (dd), $u_P(n; dd)$

Mean of n replicates obtained on the same day (sd), $u_P(n; sd)$

Precision reduction from replicate analysis if $s'_{\rm I}/s'_{\rm r}=3$:

Eurachem

A Focus for Analytical Chemistry in Europe

Snapshots of the guide (2)

Trueness uncertainty assessed from N reference materials

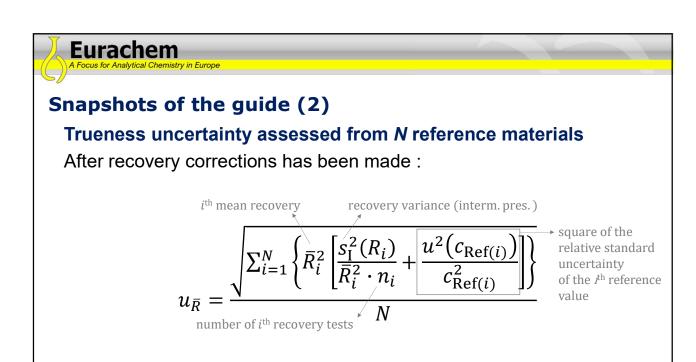
Evaluated through the determination of analyte recovery:

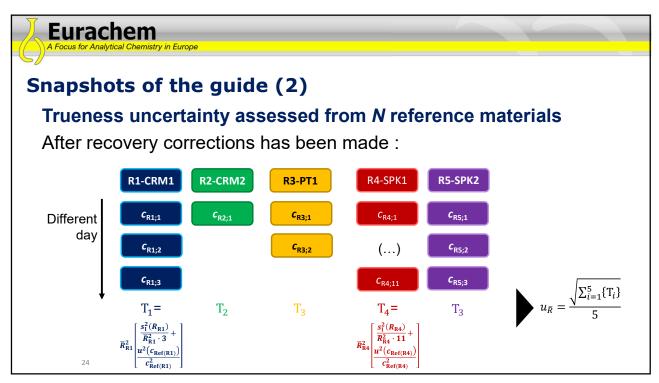
$$c$$
 measured concentration c reference concentration

Recovery value is fit for results correction if systematic effects are proportional to the concentration.

21

21

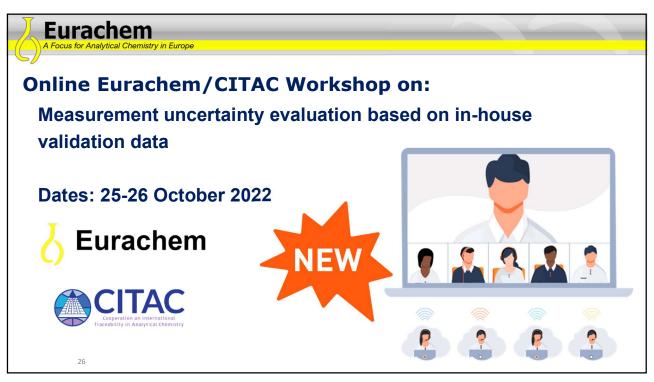

Snapshots of the guide (2)


Trueness uncertainty assessed from N reference materials

After recovery corrections has been made:

$$u_{\bar{R}} = \frac{\sqrt{\sum_{i=1}^{N} \left\{ \bar{R}_{i}^{2} \left[\frac{s_{I}^{2}(R_{i})}{\bar{R}_{i}^{2} \cdot n_{i}} + \frac{u^{2}(c_{\text{Ref}(i)})}{c_{\text{Ref}(i)}^{2}} \right] \right\}}}{N}$$

2:


FINAL REMARKS

Additional guidance on using in-house validation data for MU evaluation is needed

The simplification of MU evaluation involves facing some challenges properly

25

