VALIDATION AND UNCERTAINTY ESTIMATION OF HPLC METHOD COMBINED WITH ULTRASOUND-ASSISTED EXTRACTION PROCEDURE FOR QUANTITATIVE DETERMINATION OF HESPERIDIN OBTAINED FROM CITRUS PEEL

Imeda Rubashvili

PhD, Senior Research Scientist

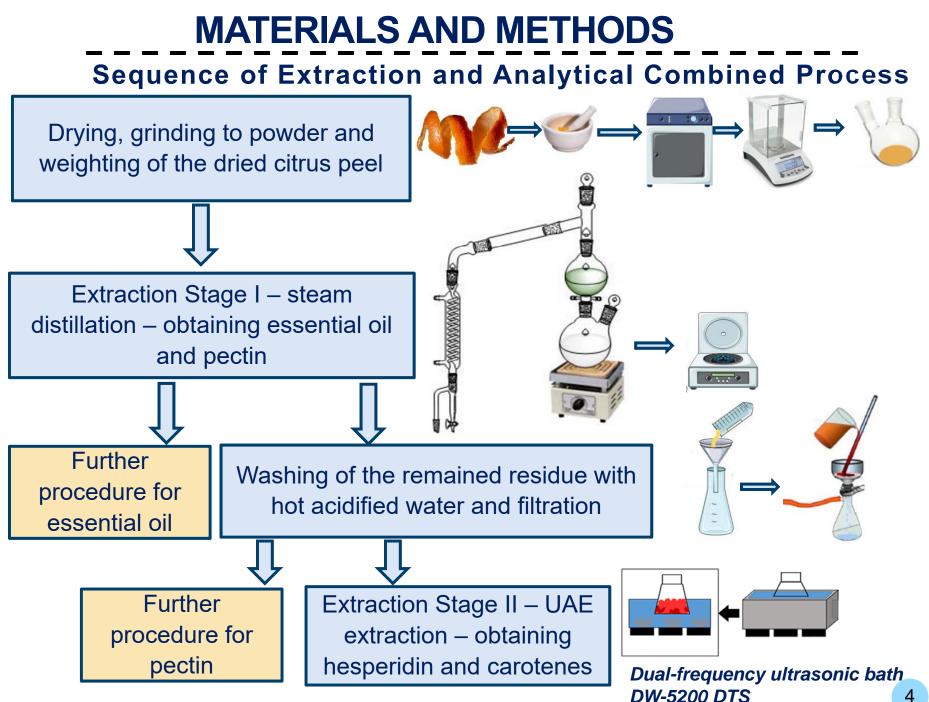
Laboratory Melikishvili Chemistry. University of Organic Chemistry of Petre Institute Physical and Organic Ivane Javakhishvili Tbilisi State

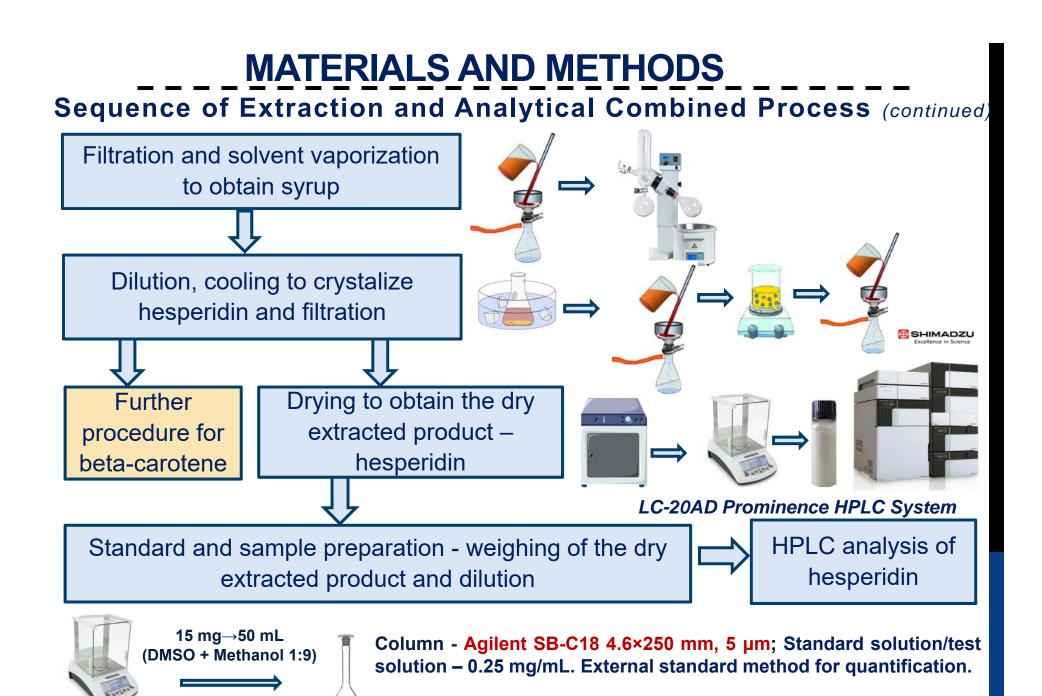
Quality Assurance Challenges of Measurements from Field to Laboratory with a Focus on ISO/IEC 17025:2017 Requirements

16-18 May, 2022 Online Workshop

INTRODUCTION

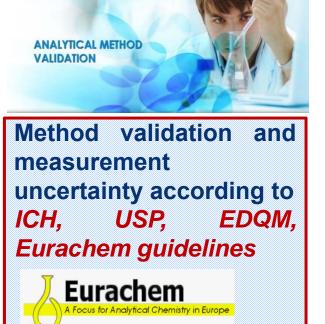



Research Goal


To validate a new method obtained with a combination of

- ✓ alternative, effective, selective, reproducible, low cost and highyield sequential two-step extraction procedure using ultrasoundassisted technique for obtaining hesperidin from citrus peel;
- ✓ specific, selective and simple analytical HPLC procedure for quantitative determination of hesperidin in the obtained dry extracted product and citrus peel.
- To evaluate measurement uncertainty of the combined method based on the validation study.

INTRODUCTION

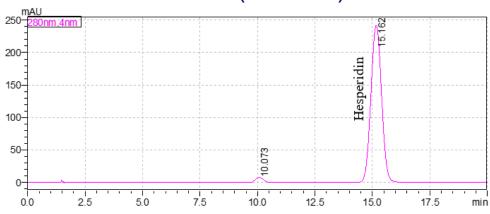

SIGMA

HESPERIDIN

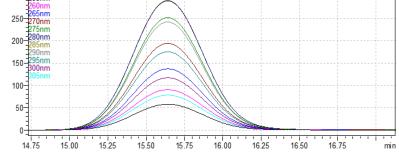
CERTIFIED REFERENCE MATERIAL

80 17034 AB Cert# AB-147

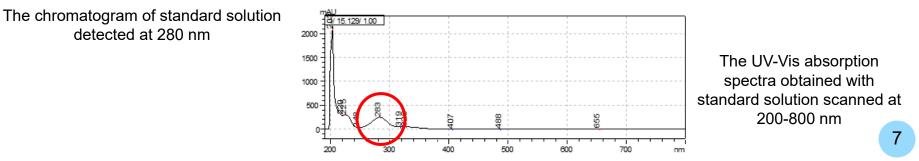
5

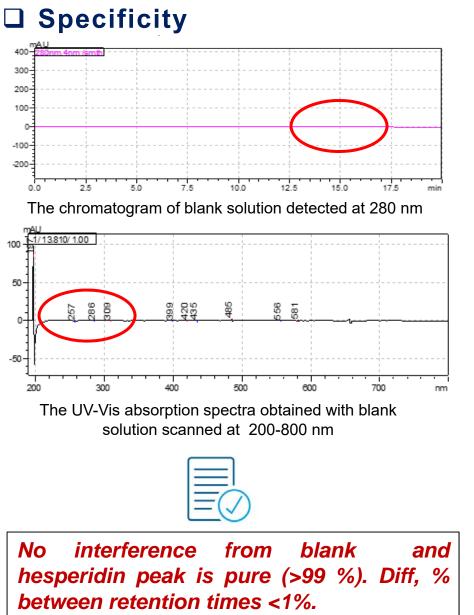

Validation Parameters:

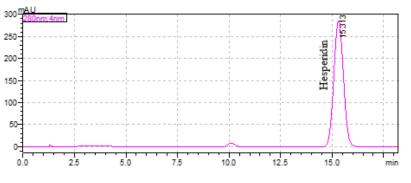
- Robustness standard solution stability/ filter compatibility test/study of critical factors effect
- ✓ Specificity Forced degradation
- ✓ Linearity-Range
- ✓ Accuracy
- Sensitivity Limit of Detection (LOD);
 Limit of Quantitation (LOQ)
- Precision repeatability (intraday) and intermediate precision (inter day) (n=6)
 - System Suitability Test (SST)

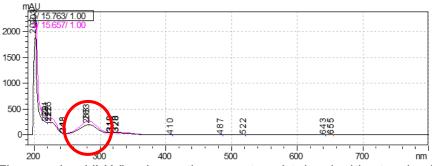

System Suitability Test (SST) – standard solution with 6 replicate injections (n=6) at 0.25 mg/mL

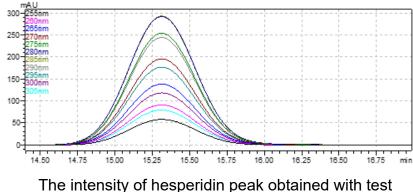
				Chromatograph
SST Parameter	Hesperidin	Acceptance criteria		ic system is
Column efficiency - N	>4953	≥2000		suitable and
RSD _A (n=6)	0.70 %	≤2 %	$\equiv \bigcirc$	has a good
RSD _{RT} (n=6)	0.15 %	≤1 %		performance.
Tailing factor - S	1.03	0.8-1.5		


Specificity – standard solution, test solution and the background control - blank (diluent) solution.

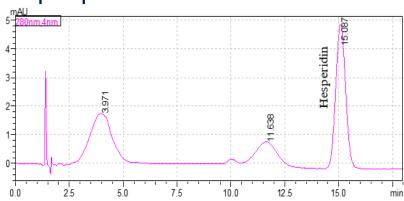


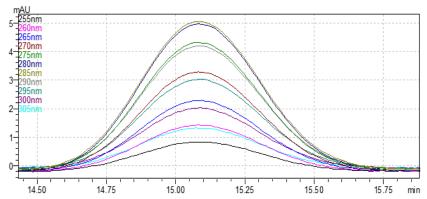

300 mAL


The UV-Vis absorption spectra of hesperidin peak obtained with standard solution measured at different wavelengths



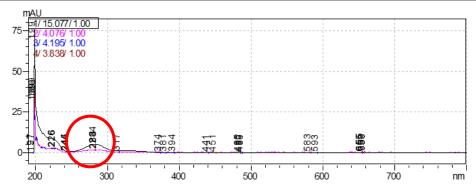
The chromatogram of test solution detected at 280 nm


The overlay UV-Vis absorption spectra obtained with standard and test solutions scanned at 200-800 nm


solution measured at different wavelengths

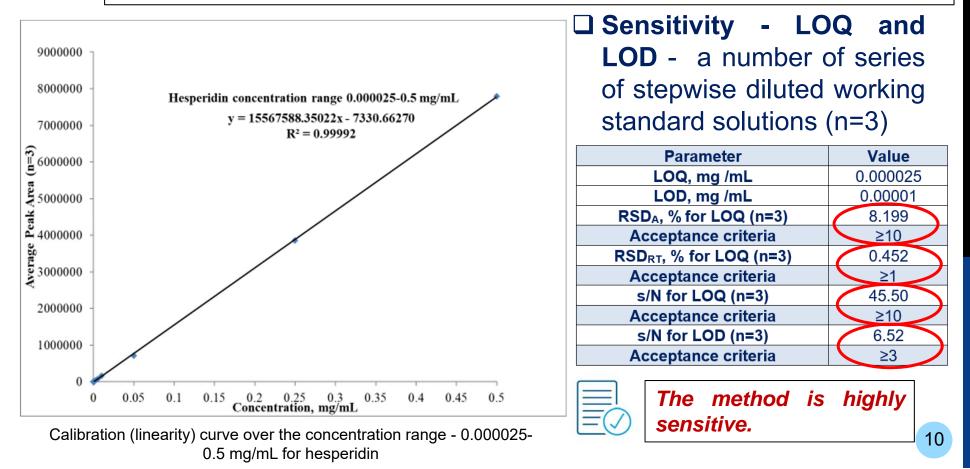
Specificity – forced degradation - samples of the dry extracted product treated under stress conditions before sample preparation.

 Condition
 Concentration of
 Degradation.


The chromatogram obtained with the test (oxidative degradation) detected at 280 nm

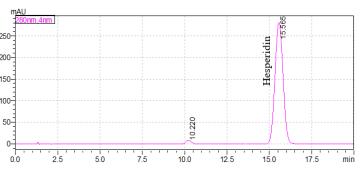
The intensity of hesperidin peak measured at different wavelength and obtained on the test solution (oxidative degradation) – worst condition

Condition	Concentration of hesperidin, mg/mL	Degradation, %
Acid degradation - 5 mL of 1M HCl for 60 mins	0.216	18.49
and then neutralized		
Alkali degradation - 5 mL of 1M NaOH for 60	0.222	16.23
mins and then neutralized		\frown
Oxidative degradation - 0.5 mL of 30 % H ₂ O ₂	0.029	89.06
Thermal degradation - 80°C for 24 h	0.125	15.54
UV degradation – 254 nm for 60 mins	0.198	44.15
Normal condition	0.265	-


The UV-Vis absorption spectra obtained with the test solution (oxidative degradation) scanned at the range 200-800 nm

Hesperidin peak is pure (>99 %); Absence of any other peak in the same retention time; peak purity passed in worst conditions.

❑ Linearity-Range - working standard solutions (n=3) at 11 different concentration levels. AC: Square of corr. coefficient – R²≥0.998.


Linearity curve over the range - 0.000025-0.5 mg/mL is linear and R²=0.99992 is highly significant; Peak area is directly proportional to the concentration of hesperidin. The method has a good linearity.

Precision - repeatability (intra-day precision) and time dependent intermediate precision (inter-day precision) - standard solution with 6 replicate injections (n=6) and 6 individual determinations of hesperidin in test solutions (100 %).

Concentration, mg/mL

Standard solution	Repeatabili	ty (intra-day)	Intermediate precision (inter-da		
Inj. №	Peak Area	Retention Time	Peak Area	Retention Time	
1	3716668	15.162	3534531	14.288	
2	3757935	15.127	3529578	14.227	
3	3784866	15.162	3528953	14.262	
4	3791810	15.141	3513652	14.241	
5	3766331	15.169	3523335	14.269	
6	3766198	15.113	3537583	14.213	
Average	3763968.00	15 15	3527938.67	14 25	
RSD, %	0.70	0.15	0.24	0.20	
Acceptance Criteria	≤2	≤1	≤2	≤1	

The chromatogram obtained with the test solution detected at 280 nm

Repeatability (intra-day)	Intermediate Precision (inter-day)					
0.281	0.238					
0.275	0.245					
0.243	0.224					
0.274 0.223						
0.249	0.217					
0.269	0.231					
0.265	0.230					
5.84	4.60					
	≦6					
	0.247					
	9.11					
	≤10					
	2.14					
	5.05					
	12.28					
	≤15					
	0.281 0.275 0.243 0.274 0.249 0.269 0.269					

-		-1	
- 1		-	
			-
-	_	1	N
L	_		/ 1

The method gives the repeatable and reproducible results. The method has a good precision.

- ✓ 2 standard solutions and 3 spiked test solutions prepared using standard addition method by spiking the known amounts at 100 % concentration level with 3 individual determinations with 3 replicate injections (n=3).
- ✓ The recovery Rec, % of the method including extraction procedure:

✓ The similarity factor (Sf):
$$Sf = \frac{W_{st1} \times A_{st2} \times 100}{W_{st2} \times A_{st1}}$$
 $Rec, \% = \frac{W_d \times 100}{W_a}$

✓ AC: Rec, % - 90.0 –110.0%; the RSD of Rec, % (n=3×3=9) ≤10.0%; The similarity factor (Sf) between 2 standard solutions 98.0 %-102.0 %

Name of solution	Percen	tage Rec Rec, %	overy -	The Average	SD, %	RSD, %	The Mean		
	Rec₁, %	Rec₂, %	Rec₃, %	Recovery, %	(n=9)	(n=9)	Recovery - R, %		
Spiked test solution I	91.65	92.15	90.36	91.39					
Spiked test solution II	86.86	87.23	87.45	87.18	3.74	4.09	91.48		
Spiked test solution III	96.51	95.99	95.12	95.87					
Similarity factor between two standard solutions									

The method gives the accurate results and has a good recovery.

□ Robustness – study of critical factors effect - small changes in the critical parameters as critical factors affected on the results of analysis.

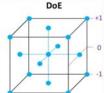
 Both quantitative and qualitative critical parameters of the method were assessed and selected using risk assessment approach;

✓ Risk parameters:

- o Risk severity (S)
- Risk probability (P)
- o Risk detectability (D)
- ✓ Risk level: *RL*=(S)+(P)+(D)

✓ Risk category:

- o **Critical**
- o Significant
- o **Negligible**


e				S	Р	D	RL	Risk Category	Critical Parameter (Risk Factor) – Xi
-	Method Parameter	Procedure	Character	L - 1	L - 1	L - 1	3-4	Negligible	
'e l				M - 2	M - 2	M - 2	5-6	Significant	
				H - 3	H - 3	H - 3	7-9	Critical	
ſS	Sample size	UAE	Experimental	3	3	3	9	Critical	X1
3	Volume of ethanol	UAE	Experimental	3	3	3	9	Critical	X2
ъ	Ultrasound power	UAE	Controlled	3	3	1	8	Critical	X3
6			automatically						
	Ultrasonication time	UAE	Controlled	3	3	1	7	Critical	X4
d			automatically						
	Extraction	UAE	Controlled	2	2	1	5	Significant	-
:k	temperature		automatically					-	
	Centrifugation	Separation	Controlled	2	2	1	5	Significant	-
	-		automatically						
ľ	Membrane filtration	Separation	Experimental	3	3	3	9	Critical	Checked within filter
									compatibility test
ľ	Rotary vaporization	Concentration	Controlled	3	3	3	9	Negligible	-
			automatically						
Ī	Solvent before	Clean-up	Experimental	3	3	3	9	Critical	X5
	crystallization								
ľ	Delay time for	Clean-up	Controlled	2	3	1	6	Significant	-
	crystallization		manually					Ŭ	
Ī	Solvent I	Clean-up	Experimental	3	3	2	8	Critical	X6
Ī	Solvent II	Clean-up	Experimental	2	2	2	6	Significant	-
Ī	Volume of solvent II	Clean-up	Experimental	3	3	2	8	Critical	X7
	Heating	Clean-up	Controlled	3	3	2	8	Critical	X8
	temperature		manually						
Ī	Heating time	Clean-up	Controlled	2	2	2	6	Significant	-
	ũ		manually						
ľ	Ratio of MP	HPLC	Experimental	3	3	1	7	Critical	X9
	components								
ľ	Membrane filtration	HPLC	Experimental	3	3	3	9	Critical	Checked within filter
									compatibility test
l l	Flow rate of MP	HPLC	Controlled	3	3	1	7	Critical	X10
			automatically						
Ī	Stationary phase of	HPLC	Experimental	3	3	1	7	Critical	Checked within
	column								intermediate precision
	Column	HPLC	Controlled	2	2	2	6	Significant	-
	temperature		automatically					-	
	Wavelength of	HPLC	Controlled	3	3	1	7	Critical	X11
	detector		automatically						
ľ	Injected volume	HPLC	Controlled	2	2	1	5	Significant	-
			automatically						

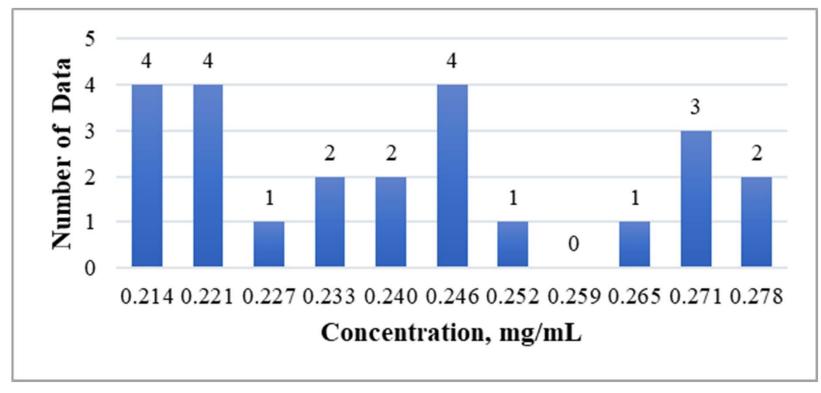
Robustness – study of critical factors effect

✓ Based on the risk assessment 11 critical parameters or factors (Xi) with small variations (low "-" and high "+" levels) of nominal "0" level

N⁰	Critical parameter - Xi	Unit		Level	
			Low level (-)	Nominal level (0)	High level (+)
1	Sample size – X1	g	15	20	25
2	Volume of ethanol – X2	mL	175	200	225
3	Ultrasound power – X3	kHz	-	25	40
4	Ultrasonication time – X4	min	25	30	35
5	Solvent before	-	4 % acetic acid	6 % acetic acid	8 % acetic acid
	crystallization – X5				
6	Solvent I for clean-up – X6	-	Methanol	Isopropanol	-
7	Volume of solvent II – X7	mL	45 (3×15)	60 (3×20)	75 (3×25)
8	Heating temperature – X8	°C	65	70	75
9	Ratio of MP components –	v/v	5:15:25:55	5:10:30:55	5:5:35:55
	X9				
10	Flow rate of MP – X10	mL/min	1.3	1.5	1.7
11	Wavelength of detector –	nm	278	280	282
	X11				

✓ 12-run experiments with 11 critical factors according to the DoE by Placket-Burman approach.

12-run experiments of 11 critical factors


The results of 12-run experiments for the robustness parameter

- 0	Run (N) №	Critical parameters - Xi										of Robustness (At nominal level "0")					
-1		X1	X2	X3	X4	X 5	X6	Х7	X8	X9	X10	X11	Conc. of hesperidin, mg/mL	SST parameters (N, S, RSD _A , RSD _{RT})	Conc. of hesperidin, mg/mL		
	1	+	-	+	+	+	-	-	-	+	-	-	0.269	N>3545; S=0.96; RSD _A =1.12 %; RSD _{RT} =0.72 %	0.281		
	2	+	-	+	+	+	-	-	-	+	-	+	0.211	N>3342; S=0.91; RSD _A =0.89 %; RSD _{RT} =0.46 %	0.275		
	3	-	+	+	+	-	-	-	+	-	+	+	0.217	N>3133; S=0.97; RSD _A =1.33 %; RSD _{RT} =0.12 %	0.243		
levels	4	+	+	+	-	-	-	+	-	+	+	-	0.254	N>2345; S=0.88; RSD _A =1.32 %; RSD _{RT} =0.45 %	0.274		
	5	+	+	-	-	-	+	-	+	+	-	+	0.263	N>3145; S=0.96; RSD _A =0.49 %; RSD _{RT} =0.33 %	0.249		
	6	+	-	-	-	+	-	+	+	-	+	+	0.221	N>3212; S=0.97; RSD _A =0.98 %; RSD _{RT} =0.61 %	0.269		
and	7	-	-	-	+	-	+	+	-	+	+	+	0.233	N>3041; S=0.92; RSD _A =1.37 %; RSD _{RT} =0.88%	0.238		
"+" "+"	8	-	-	+	-	+	+	-	+	+	+	-	0.211	N>2984; S=0.93; RSD _A =1.32 %; RSD _{RT} =0.54 %	0.245		
_	9	-	+	-	+	+	-	+	+	+	-	-	0.219	N>3977; S=1.03; RSD _A =0.95 %; RSD _{RT} =0.74 %	0.224		
with two	10	+	-	+	+	-	+	+	+	-	-	-	0.239	N>4977; S=1.00; RSD _A =0.47 %; RSD _{RT} =0.12 %	0.223		
ith	11	-	+	+	-	+	+	+	-	-	-	+	0.243	N>4132; S=1.02; RSD _A =0.41 %; RSD _{RT} =0.21 %	0.217		
3	12	-	-	-	-	-	-	-	-	-	-	-	0.222	N>4912; S=0.99; RSD _A =0.43 %; RSD _{RT} =0.46 %	0.231		
	Avera	ige, m	g/mL										0.234	Acceptance Criteria	0.247		
	Minim			g/mL									0.211	N>200; S=0.8-1.5;	0.217		
	Maxin												0.269	RSD _A ≤2 %;	0.281		
	Abs. I				maxim	al and	d mini	mal va	alues,	mg/m	L		0.058	RSD _{RT} ≤1 %	0.064		
	Diff.,									-				5.73			

15

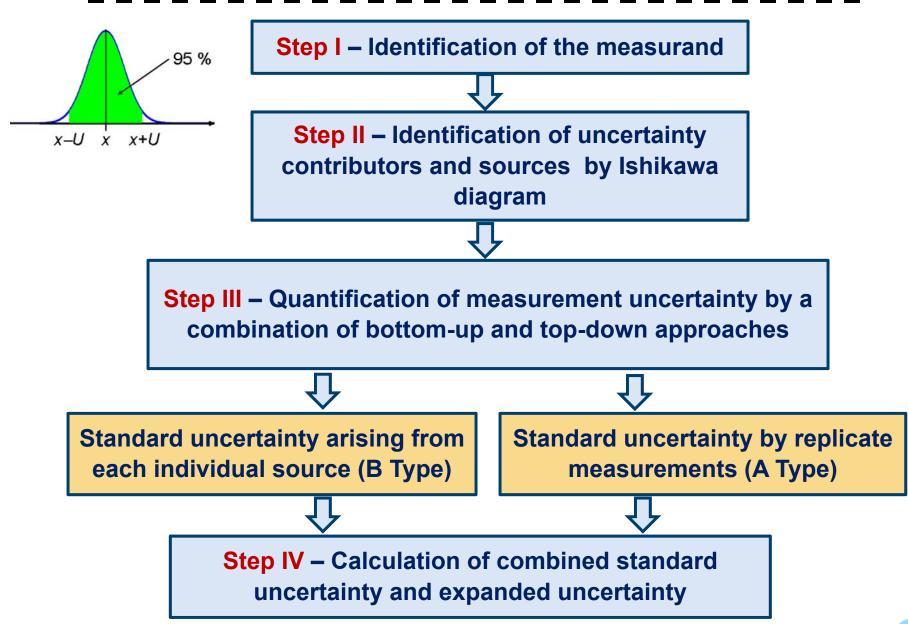
Robustness – study critical factors effect

- ✓ The histogram plotted based on the analytical data obtained the precision and robustness parameters (N=24). There is a multi-modal data distribution;
- ✓ The analytical data spread is from 0.211 mg/mL to 0.281 mg/mL;
- ✓ Abs. Diff.=0.058 mg/mL of the robustness is very close to Abs. Diff.=0.064 mg/mL of the precision; Diff.,%= 5.73 % between the precision (n=12) and robustness (N=12) average results ≤15 % (Precision AC).

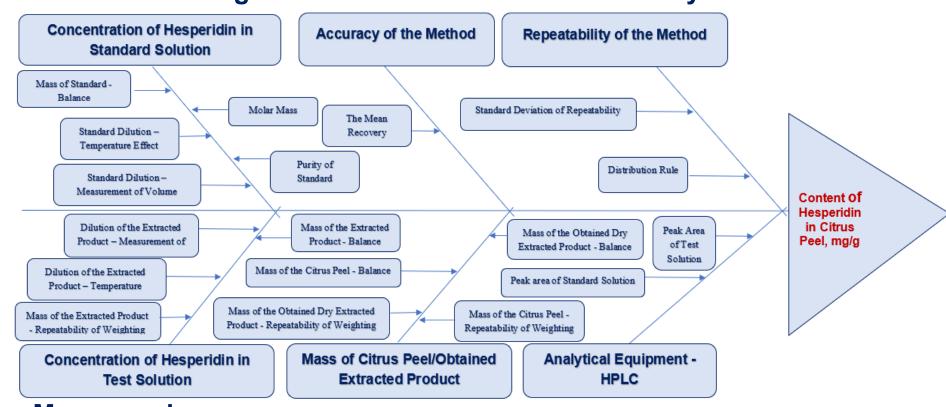
Robustness

✓ Standard solution stability

Standard solution stored under refrigeration is stable within 7 day – Diff, % between peak areas obtained with two standard solutions, one stored under refrigeration for 7 days and another prepared freshly - 1.75 %<3 % (AC);


✓ Filter compatibility test

- Both type membrane filters 0.45 µm membrane PVDF filter and MCE membrane filter were evaluated;
- The Diff, % between peak areas of filtered and non-filtered standard solutions (0.25 mg/mL) 0.59 % and 0.89 %, respectively (AC≤2 %);
- No adsorption of each analyte on the filter and no affect on the result of analysis.



The method has a good robustness.

MEASUREMENT UNCERTAINTY

MEASUREMENT UNCERTAINTY Ishikawa Diagram for Identification of Uncertainty Contributors

Measurand - The content of hesperidin – X, mg per 1 g of the dry sample of citrus peel was calculated by the formula:

$$X = \frac{A_s \times W_{st} \times V_S \times W_d \times P}{A_{st} \times W_s \times W \times V_{St} \times 100}$$

where, $A_s - The$ peak area of hesperidin obtained with the test solution; $A_{st} - The$ peak area of hesperidin obtained with the standard solution; W_{st} – The weight of the standard, mg; V_{st} – The dilution of the standard, mL; P – The purity of the standard, %; W - The weight of the dry sample of citrus peel, g; W_s - The weight of the extracted product sample taken for test solution, mg; VS – The dilution of the extracted product sample, mL; W_d - The weight of the obtained extracted product 19 after extraction, mg.

MEASUREMENT UNCERTAINTY

Measurement Uncertainty of the Method

Combined Standard Uncertainty, mg/g							
$u = \sqrt{u_A^2 + \left(X \times \sqrt{(c_1 \times \frac{u_{St}}{X})^2 + (c_2 \times \frac{u_S}{X})^2 + (c_3 \times \frac{u(m)}{W})^2 + (c_4 \times \frac{u(m_d)}{W_d})^2 + (c_5 \times u_R)^2 + (c_6 \times \frac{u(E)}{A})^2}\right)^2}$							
	Coverage Factor						
Expanded Uncertainty, mg/g	Expanded Uncertainty, mg/g $U = u \times k$						
Expanded Uncertainty, %	$U,\% = \frac{U \times 100}{X}$	1.76					

QUANTITATIVE ESTIMATION OF HESPERIDIN

- □ The content of hesperidin in mg per 1 g of tangerine peel varies from 34.13 to 36.32 mg/g (from 3.41 % to 3.63 %); The average content of hesperidin is <u>35.36 mg ± 0.62 mg</u> (U; k=2 (1.98), approximately 95% level of confidence) per 1 g tangerine peel;
- □ The purity of the extracted product is high and varies from 85.17 % to 92.62 %;
- □ The average value of the total content of hesperidin equals to <u>90.13 % ±</u> <u>1.76 %</u> (U; k=2, approximately 95% level of confidence).

The content of hesperidin in tangerine peel and the extracted product.

Sample №		din in the tangerine mg/g	Percentage content of hesperidin in the extracted product, %			
	Repeatability	Repeatability Intermediate		Intermediate		
		Precision		Precision		
1	34.4767	36.2097	89.928	90.699		
2	36.1451	34.7775	91.483	86.869		
3	34.1271	35.6890	85.170	89.762		
4	35.2015	35.1494	93.919	90.388		
5	35.4447	35.9559	88.063	91.793		
6	34,8331	36.3241	90 871	92 622		
Average (n=6)	35.0380	35.6843	89.91	90.699		
Average (n=12)	35.	.36	90	.13		

CONCLUSION

- The developed method obtained with a combination two-stage sequential extraction and analytical HPLC procedures of hesperidin is a simple, effective, eco-friendly, reproducible, low cost, selective, sensitive, specific and full validated with measurement uncertainty.
- The proposed method can be successfully used to apply for determination the content and the purity of hesperidin in the dry extracted product and citrus waste material in routine and stability study analyses;
- The method fully supports the developed laboratory technologies for utilization of citrus agro-industrial waste materials to obtain simultaneously four bioactive valuable compounds – essential oil, pectin, hesperidin and beta-carotene from one citrus waste material in the same process which can easily be adapted to industrial conditions and to design a manufacturing technological process.

Thank You For Your Attention!

E-mail:

<u>rubashvili@yahoo.fr</u>

imeda.rubashvili@tsu.ge